85 research outputs found

    EXIT-chart aided near-capacity quantum turbo code design

    No full text
    High detection complexity is the main impediment in future Gigabit-wireless systems. However, a quantum-based detector is capable of simultaneously detecting hundreds of user signals by virtue of its inherent parallel nature. This in turn requires near-capacity quantum error correction codes for protecting the constituent qubits of the quantum detector against the undesirable environmental decoherence. In this quest, we appropriately adapt the conventional non-binary EXtrinsic Information Transfer (EXIT) charts for quantum turbo codes by exploiting the intrinsic quantum-to-classical isomorphism. The EXIT chart analysis not only allows us to dispense with the time-consuming Monte-Carlo simulations, but also facilitates the design of near-capacity codes without resorting to the analysis of their distance spectra. We have demonstrated that our EXIT chart predictions are in line with the Monte-Carlo simulations results. We have also optimized the entanglement-assisted QTC using EXIT charts, which outperforms the existing distance spectra based QTCs. More explicitly, the performance of our optimized QTC is as close as 0.3 dB to the corresponding hashing bound

    Entanglement-assisted quantum turbo codes

    Get PDF
    An unexpected breakdown in the existing theory of quantum serial turbo coding is that a quantum convolutional encoder cannot simultaneously be recursive and non-catastrophic. These properties are essential for quantum turbo code families to have a minimum distance growing with blocklength and for their iterative decoding algorithm to converge, respectively. Here, we show that the entanglement-assisted paradigm simplifies the theory of quantum turbo codes, in the sense that an entanglement-assisted quantum (EAQ) convolutional encoder can possess both of the aforementioned desirable properties. We give several examples of EAQ convolutional encoders that are both recursive and non-catastrophic and detail their relevant parameters. We then modify the quantum turbo decoding algorithm of Poulin et al., in order to have the constituent decoders pass along only "extrinsic information" to each other rather than a posteriori probabilities as in the decoder of Poulin et al., and this leads to a significant improvement in the performance of unassisted quantum turbo codes. Other simulation results indicate that entanglement-assisted turbo codes can operate reliably in a noise regime 4.73 dB beyond that of standard quantum turbo codes, when used on a memoryless depolarizing channel. Furthermore, several of our quantum turbo codes are within 1 dB or less of their hashing limits, so that the performance of quantum turbo codes is now on par with that of classical turbo codes. Finally, we prove that entanglement is the resource that enables a convolutional encoder to be both non-catastrophic and recursive because an encoder acting on only information qubits, classical bits, gauge qubits, and ancilla qubits cannot simultaneously satisfy them.Comment: 31 pages, software for simulating EA turbo codes is available at http://code.google.com/p/ea-turbo/ and a presentation is available at http://markwilde.com/publications/10-10-EA-Turbo.ppt ; v2, revisions based on feedback from journal; v3, modification of the quantum turbo decoding algorithm that leads to improved performance over results in v2 and the results of Poulin et al. in arXiv:0712.288

    Thermal Fluctuations Evolution of the New Schwarzschild Black Hole

    Full text link
    We study the thermodynamic analysis and logarithm corrections of the new Schwarzschild black hole. We compute the thermodynamic quantities like entropy, Hawking temperature and heat capacity. The area of black holes never decreases because they absorb everything from their surroundings due to high gravity. In this regard, the area-entropy relation proposed by Bekenstein needs to be corrected, leading to the concept of logarithmic corrections. To do so, we obtain the corrected entropy for new Schwarzschild black hole to analyze the effects of thermal fluctuations and we evaluate the thermodynamic quantities like specific heat, internal energy, Helmholtz free energy, Gibbs free energy, enthalpy and pressure in the presence of correction parameter η\eta. Furthermore, we check the stability of the system with the help of heat capacity and well known Hessian matrix technique. By our graphical analysis, we observe that the thermal fluctuations effects the stability of small radii black holes (e.g., New Schwarzchild black hole) and therefore, small black holes get unstable regions due to these first order corrections.Comment: 11 pages, 14 figures, version accepted for publication in Annals of Physic

    The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure

    Full text link
    Powerful Quantum Error Correction Codes (QECCs) are required for stabilizing and protecting fragile qubits against the undesirable effects of quantum decoherence. Similar to classical codes, hashing bound approaching QECCs may be designed by exploiting a concatenated code structure, which invokes iterative decoding. Therefore, in this paper we provide an extensive step-by-step tutorial for designing EXtrinsic Information Transfer (EXIT) chart aided concatenated quantum codes based on the underlying quantum-to-classical isomorphism. These design lessons are then exemplified in the context of our proposed Quantum Irregular Convolutional Code (QIRCC), which constitutes the outer component of a concatenated quantum code. The proposed QIRCC can be dynamically adapted to match any given inner code using EXIT charts, hence achieving a performance close to the hashing bound. It is demonstrated that our QIRCC-based optimized design is capable of operating within 0.4 dB of the noise limit

    EXIT-chart aided code design for symbol-based entanglement-assisted classical communication over quantum channels

    No full text
    Quantum-based transmission is an attractive solution conceived for achieving absolute security. In this quest, we have conceived an EXtrinsic Information Transfer (EXIT) chart aided channel code design for symbol-based entanglement-assisted classical communication over quantum depolarizing channels. Our proposed concatenated code design incorporates a Convolutional Code (CC), a symbol-based Unity Rate Code (URC) and a soft-decision aided 2-qubit Superdense Code (2SD), which is hence referred to as a CC-URC-2SD arrangement. We have optimized our design with the aid of non-binary EXIT charts. Our proposed design operates within 1 dB of the achievable capacity, providing attractive performance gains over its bit-based counterpart. Quantitatively, the bit-based scheme requires 60% more iterations than our symbol-based scheme for the sake of achieving perfect decoding convergence. Furthermore, we demonstrate that the decoding complexity can be reduced by using memory-2 and memory-3 convolutional codes, while still outperforming the bit-based approach<br/

    Distributed source-channel coding using reduced-complexity syndrome-based TTCM

    No full text
    In the context of distributed joint source-channel coding, we conceive reduced-complexity turbo trellis coded modulation (TTCM)-aided syndrome-based block decoding for estimating the cross-over probability pe of the binary symmetric channel, which models the correlation between a pair of sources. Our joint decoder achieves an accurate correlation estimation for varying correlation coefficients at 3 dB lower SNR, than conventional TTCM decoder, despite its considerable complexity reduction

    Fifteen years of quantum LDPC coding and improved decoding strategies

    No full text
    The near-capacity performance of classical low-density parity check (LDPC) codes and their efficient iterative decoding makes quantum LDPC (QLPDC) codes a promising candidate for quantum error correction. In this paper, we present a comprehensive survey of QLDPC codes from the perspective of code design as well as in terms of their decoding algorithms. We also conceive a modified non-binary decoding algorithm for homogeneous Calderbank-Shor-Steane-type QLDPC codes, which is capable of alleviating the problems imposed by the unavoidable length-four cycles. Our modified decoder outperforms the state-of-the-art decoders in terms of their word error rate performance, despite imposing a reduced decoding complexity. Finally, we intricately amalgamate our modified decoder with the classic uniformly reweighted belief propagation for the sake of achieving an improved performance

    Joint quantum-assisted channel estimation and data detection

    No full text
    Joint Channel Estimation (CE) and Multi-User Detection (MUD) has become a crucial part of iterative receivers. In this paper we propose a Quantum-assisted Repeated Weighted Boosting Search (QRWBS) algorithm for CE and we employ it in the uplink of MIMO-OFDM systems, in conjunction with the Maximum A posteriori Probability (MAP) MUD and a near-optimal Quantum-assisted MUD (QMUD). The performance of the QRWBS-aided CE is evaluated in rank-deficient systems, where the number of receive Antenna Elements (AE) at the Base Station (BS) is lower than the number of supported users. The effect of the Channel Impulse Response (CIR) prediction filters, of the Power Delay Profile (PDP) of the channels and of the Doppler frequency have on the attainable system performance is also quantified. The proposed QRWBS-aided CE is shown to outperform the RWBS-aided CE, despite requiring a lower complexity, in systems where iterations are invoked between the MUD, the CE and the channel decoders at the receiver. In a system, where U=7 users are supported with the aid of P=4 receive AEs, the joint QRWBS-aided CE and QMUD achieves a 2 dB gain, when compared to the joint RWBS-aided CE and MAP MUD, despite imposing 43% lower complexity
    • …
    corecore